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Fig. 1. AnyThermal is a task-agnostic thermal encoder that delivers state-of-the-art performance across diverse tasks—such as cross-modal place
recognition, thermal segmentation, and monocular thermal depth estimation—and can be applied to a wide range of environments, including indoor, aerial,
off-road, and urban settings. To bridge the existing data diversity gap for training AnyThermal, we build (b) an open-source data collection platform and
introduce (c) TartanRGBT, a synchronized RGB-T dataset that spans over four types of diverse environments, as shown in (d) with a balanced distribution

and a total of 16943 RGB-T pairs.

Abstract— We present AnyThermal, a thermal backbone
that captures robust task-agnostic thermal features suitable
for a variety of tasks such as cross-modal place recognition,
thermal segmentation, and monocular depth estimation using
thermal images. Existing thermal backbones that follow task-
specific training from small-scale data result in utility limited
to a specific environment and task. Unlike prior methods,
AnyThermal can be used for a wide range of environments
(indoor, aerial, off-road, urban) and tasks, all without task-
specific training. Our key insight is to distill the feature
representations from visual foundation models such as DINOv2
into a thermal encoder using thermal data from these multiple
environments. To bridge the diversity gap of the existing RGB-
Thermal datasets, we introduce the TartanRGBT platform, the
first open-source data collection platform with synced RGB-
Thermal image acquisition. We use this payload to collect the
TartanRGBT dataset - a diverse and balanced dataset collected
in 4 environments. We demonstrate the efficacy of AnyTher-
mal and TartanRGBT, achieving state-of-the-art results with
improvements of up to 36% across diverse environments and
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downstream tasks on existing datasets

I. INTRODUCTION

The utility of thermal images has been well explored in
the context of robot perception in degraded environments
[1]-[4]. Unlike RGB sensors that are sensitive to lighting
conditions and weather changes, thermal imagery is robust
to all these challenges, making it a necessary addition
for resilient autonomy in scenarios like search and rescue,
autonomous driving, and surveillance.

However, unlike RGB images, thermal images suffer from
a scarcity of data. While RGB benefits from Internet-scale
repositories that have driven major advances in deep learning
[5]-[7], no such large-scale resource exists for thermal data.
As a result, thermal feature extractors have yet to benefit
from training at scale. Consequently, many works adapt pre-
trained RGB backbones with task-specific objectives [3], [8],
[9]. In this work, we show that such RGB-only backbones
fail to capture thermal-specific cues, and that using thermal
images for task-agnostic training of the feature extraction
backbone yields substantially stronger representations.

Since thermal datasets are scarce, a promising approach to
improving thermal models is distilling knowledge from pre-
trained RGB models [10]. This leverages both the diversity
of large-scale RGB data and the correspondence between



RGB and thermal views of the same scene. Effective knowl-
edge distillation, even in data-constrained domains, requires
sufficient data diversity [11]. However, prior work has been
limited to a single dataset from a single environment [10],
restricting its generality. In this paper, we address this limi-
tation by combining RGB-T datasets from diverse domains
for distillation, and show that the resulting backbone achieves
state-of-the-art performance on thermal segmentation, cross-
modal place recognition, and thermal depth estimation.

While several RGB-T datasets exist, most are confined to a

single type of environment (Table [[). To advance knowledge
distillation for thermal images, there is a clear need for RGB-
T datasets spanning multiple environments. To bridge this
gap, we collect a new dataset across multiple environments
and demonstrate that our diverse dataset can further amplify
the gains achieved from distillation.

We summarize our main contributions as follows:

o AnyThermal: a task-agnostic feature extractor for ther-
mal images obtained through knowledge distillation
between RGB and thermal images. We show that
AnyThermal when combined with task-specific heads,
achieves state-of-the-art performance across environ-
ments on downstream tasks like thermal segmentation
and cross-modal place recognition, while outperforming
RGB-based backbones of comparable size for tasks like
monocular depth estimation using thermal images.

e TartanRGBT platform: an open source data collection
platform for collecting simultaneously captured stereo
RGB and stereo thermal images. To the authors’ best
knowledge, this is the first open-source data collection
platform for thermal images.

o TartanRGBT dataset: we collect a diverse, balanced data
set using the TartanRGBT platform. The dataset covers
residential areas, campuses, indoor environments, off-
road terrain, parks, and trails. We also show how this
dataset can further boost AnyThermal’s performance in
various thermal downstream tasks across environments.

We will release the models and code for AnyThermal,

and open-source the TartanRGBT platform along with the
collected TartanRGBT dataset upon acceptance.

II. RELATED WORKS
A. Thermal Images for Robot Perception

Thermal images have been applied to odometry [12]-[14],
cross-modal place recognition [3], segmentation [2], [15],
detection [4], and depth estimation [1], [16] across environ-
ments including indoor [12], [13], aerial [2], [3], off-road
[17], and urban [1], [4]. Although thermal algorithms have
diverse applications, they are often studied in narrow tasks
or domains, limiting their utility. In contrast, we evaluate
AnyThermal across a wide sets of tasks and environments to
showcase its robustness and utility as a thermal encoder.

B. Multi-modal Foundation Models

Foundation models [5], [6], [18] have shown that large-
scale pretraining enables generalized vision and language
backbones. This has motivated robotics to adopt them for
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Fig. 2. We perform knowledge distillation between a frozen DINOv2
and a trainable DINOvV2 network (AnyThermal), both initialized with pre-
trained DINOv2 weights. The frozen network serves as the teacher, while
the trainable AnyThermal backbone learns from it. Pre-trained initialization
enables AnyThermal to generalize across environments, and distillation on
thermal images allows it to extract meaningful thermal features. Training is
task-agnostic, using self-supervised losses between thermal features from
AnyThermal and RGB features from the frozen teacher. This approach
requires no labels and scales naturally with increasing RGB-T datasets.

other modalities, with works like [10] demonstrating distil-
lation of visual models into non-visual domains and building
multimodal representations. Distillation has proven effective
for depth/lidar [19]-[22], improving tasks such as segmenta-
tion, classification, and place recognition. Success in transfer-
ring foundation model priors to the thermal domain [10] has
been limited by the use of scarce and non-diverse datasets.
With AnyThermal, we show that training on multiple datasets
enables effective distillation of foundation model priors,
given that the datasets are collectively diverse.

C. RGB-T Datasets

Recent RGB-T datasets span urban [1], [12], [14], [23],
indoor [13], aerial [2], [3] and off-road [2], [17], yet
most cover only a single environment (Table [). Moreover,
each uses a distinct acquisition platform, and this non-
standardization limits scalable, diverse collection. As realistic
thermal simulation is not yet feasible, research progress
with thermal images relies on real-world data collection,
highlighting the need for community-driven efforts to collect
data across environments and embodiments. To lower this
barrier, we will be open-sourcing our TartanRGBT platform,
whose efficacy is demonstrated through TartanRGBT dataset

(Section [VI-D).

III. ANYTHERMAL: THERMAL FEATURE-EXTRACTION
BACKBONE

A. Overview

AnyThermal is a DINOv2-based model that has under-
gone knowledge distillation for thermal images. To improve
generalizability across domains, the distillation is done by
combining multiple datasets across domains (urban, aerial,
indoor, off-road). Moreover, similar to DINOv2, we show
that using AnyThermal as a feature extraction backbone



combined with a task-specific head can lead to state-of-the-
art performance on tasks like thermal segmentation, cross-
modal place recognition, and monocular depth estimation.

B. Knowledge Distillation

To perform knowledge distillation, two DINOv2 ViT-
B/14 encoders are used. Both are initialized with pretrained
weights. The teacher network processes RGB images and
is kept frozen, while the student processes thermal images
and is trainable (Fig. [2). To use DINOv2 encoders with
thermal images, the images are converted from grayscale
to 3-channel. After distillation, the student serves as our
AnyThermal model.

For RGB-thermal knowledge distillation, we apply a con-
trastive loss on CLS token features, leveraging the intuition
that corresponding RGB—thermal pairs should share similar
global semantics. CLS token features from the final layer
of DINOV2 capture semantic information [5], rather than
low-level cues like color, making them a strong basis for
alignment. Moreover, using contrastive loss on the CLS
token, as compared to any form of patch loss (losses calcu-
lated on corresponding patches from the RGB-thermal pair),
also relaxes constraints on RGB-thermal image alignment
or exact synchronization. This is particularly advantageous
when distilling using datasets like VIVID++ and STheReO,
where perfectly aligned RGB—thermal pairs or precise time-
sync are not available.

We used five datasets to train AnyThermal, distributed as:

e Urban: ViVID++ (Outdoor Driving Sequences) [12],
STheREo [14], Freiburg [23] and TartanRGBT (ours)

« Aerial: Boson Nighttime Dataset [3]

¢ Indoor: TartanRGBT (ours)

o Offroad: TartanRGBT (ours)

Other datasets such as MS? [1], CART [2], and OdomBe-
yondVision [13] are reserved for zero-shot evaluation on
downstream tasks. M2P2, despite its large size of off-road
sequences, is excluded from training AnyThermal because
many sequences have poor visibility, which weakens RGB
teacher features and hampers effective thermal distillation.

C. Task-Specific Head and Training

As the feature descriptors from a ViT-based model can
be quite large, they are combined with task-specific heads,
which can be trained for a particular task like segmentation,
visual place recognition (VPR), depth estimation, etc. In
Section we showcase how AnyThermal, when combined
with task-specific heads, can lead to state-of-the-art perfor-
mance on downstream tasks.

D. Cross-Modal Place Recognition

A cross-modal place recognition task is to find a positive
match in a database (D) of the modality A for a query (q)
of modality B. Similar to [3], we use thermal queries, and
a corresponding RGB database. Moreover, for each training
dataset, an environment-specific radius defines ground-truth
positives, chosen as a geographical radius when odome-
try/GPS is available or a temporal(frame) radius otherwise.

For VPR, methods like SALAD [24] and SGM [3] show
benefits of pairing a feature extractor [S], [25] with a spe-
cialized head (NetVLAD [26], SALAD). We choose SALAD
due to its higher recall compared to other VPR heads [24].

Following [3], we train with a triplet margin loss [27],
where each triplet (a,p,n) consists of an anchor (RGB or
thermal image), a positive, and a negative. All datasets used
for knowledge distillation also train the VPR head, ensuring
robust clustering across environments. Unlike distillation,
VPR training uses intra-dataset sampling to form harder,
visually similar triplets for more effective learning.

E. Thermal Segmentation

As suggested in DINOvV2 [5], ViT feature extractors (e.g.,
DINOvV2, AnyThermal) can pair with lightweight heads for
segmentation. After ablations with a single-layer MLP, two-
layer non-linear MLP, and a DPT head, we select the two-
layer non-linear MLP for AnyThermal. It takes patch features
of size (H/14 x W/14 x 768) from DINOv2 and outputs a
mask (H/14xW/14x C') for C classes, which is upsampled
and compared with the ground truth. The backbone remains
frozen, training only the head with Dice loss [28], which
outperformed cross-entropy. To mitigate data scarcity, we
apply augmentations including brightness, contrast, gamma,
and horizontal flipping.

FE. Mono-Thermal Depth Estimation

For monocular depth estimation, we use the training and
evaluation code for MiDaS [29] framework from [8], which
originally uses an EfficientLite3 backbone. We replace this
with ViT-based backbones (frozen DINOv2 or AnyThermal),
using multiscale patch features from different layers to mimic
EfficientNet3’s hierarchical features. The rest of the MiDaS
architecture remains unchanged.

IV. TARTANRGBT PLATFORM

To collect RGB-T pairs in diverse environments, we have
designed a data collection platform - TartanRGBT platform,
as shown in Fig. [3] which comprises a compute module
(NVIDIA Orin AGX 64GB), an 18V Makita battery, a ZEDx
camera (stereo RGB + IMU), a ZEDx quad link capture card,
and two FLIR Boson 640+ cameras (stereo-thermal). The
sensors are hardware timesynced and capture data at 30Hz.

A. CAD design and 3D printing

The payload, as shown in Fig. |3] is housed in a custom
3D-printed case with ergonomic handles on the top and sides
for ease of use. Each thermal camera has heatsinks and an
active cooling fan to maintain stable operation. The enclosure
provides access to external ports and includes air vents to
ensure airflow around the onboard computer.

B. Time Syncing

In our platform, all four cameras (2 RGB, 2 thermal) are
hardware-synchronized. The stereo RGB pair from the ZEDx
is factory-synced, while a trigger pulse from the ZED Link
Capture Card Quad synchronizes the thermal cameras. The
pulse, aligned with RGB frame capture, is fed to both thermal
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Left: CAD model of the TartanRGBT system with half of the camera’s and payload’s casing hidden. Numbered components: (1) ZED X stereo

camera; (2) Teledyne FLIR Boson 640 x 512, 4.9 mm, 95° HFoV, short-lens Shutterless LWIR thermal camera; (3) 5 V, 30 mm blower fan; (4) Wi-Fi
antennae; (5) copper heat sinks (surrounding the thermal camera body); (6) NVIDIA Jetson AGX Orin Developer Kit, 64 GB; (7) Makita 18 V LXT®
lithium-ion 4.0 Ah battery with adapter; (8) power switch; (9) recording button. Right: Overview of the connections between components, showing power
(orange), sensor data transfer (green), and signal transfer(pink) —time synchronization and recording button trigger.

Fig. 4. Thermal checkerboard calibration image before (left) and after
(right) fisheye rectification

cameras via their external sync pins. Configured in SLAVE
mode with the BOSON SDK, the thermal cameras capture
at 30 FPS in sync with the RGB cameras.

C. Calibration

A complete calibration of all cameras requires intrinsic,
distortion, and extrinsic factors between the cameras. Factory
calibration of the stereo RGB pair was used to retrieve the
intrinsics and distortion coefficients of each RGB camera.
To calibrate the intrinsics and distortion parameters of the
thermal cameras, a custom heated checkerboard was used
similar to [30]. The results after thermal rectification can be
seen in Fig. [ . The extrinsics between the RGB and thermal
cameras were retrieved from the CAD design.

D. Data Collection Procedure

For ease of data collection, the payload auto-launches all
sensor drivers (cameras, ROS2 recording, GPIO) via Docker
at startup, eliminating manual setup. A hardware button
enables one-click start/stop of recordings, and external WiFi
antennas provide remote access to the ORIN.

E. Open-Source

In order to open-source the TartanRGBT platform, care
has been taken to use easily available parts for assembly.
Upon acceptance, we will release the CAD files, software
stack (Docker, sensor drivers), component list, and assembly

instructions. With this, our hope is to lower the entry barrier
for the research community to collect RGB-T data.

V. TARTANRGBT DATASET
A. Data Distribution

As shown in Table [ the TartanRGBT dataset is the first
of its kind in offering broad environmental diversity along-
side high-quality time-synced and registered RGB-thermal
images. Although its size is moderate compared to other
datasets, the emphasis on diversity during collection makes
it impactful in knowledge distillation compare to existing
datasets, as demonstrated in Section [VI-D]

B. Modalities

Using the TartanRGBT platform, we record stereo RGB,
stereo thermal, IMU, and thermal FFC status (manually
triggered and timesynced). FFC frames are filtered since
thermal capture pauses during calibration. To generate regis-
tered RGB-thermal pairs, we use FoundationStereo [31] for
dense depth from stereo RGB, which will also be released.
For training applications such as visual place recognition
(Section [II-D), we generate odometry using MAC-VO [32].

C. Thermal 8-bit Processing

To convert 16-bit raw thermal to an 8-bit image, similar
to [16], we apply the following in sequence: Min-Max
normalisation, CLAHE, and BilateralFilter.

D. RGB-Thermal Image Registration

Pixel-level RGB—-thermal registration ensures spatial cor-
respondence, improving distillation supervision and enabling
tasks such as RGB—thermal translation, label transfer, and
cross-modal learning. Existing aligned datasets ( [2], [23],
[15]) are limited and in singular environments, making our
diverse dataset valuable for training and benchmarking.

Following [23], alignment has three stages: (1) estimate
depth from rectified stereo RGB using FoundationStereo [31]



TABLE I
COMPARISON OF RGB-T DATASETS ACROSS SENSING MODALITIES, SYNCHRONISATION, AND ENVIRONMENTS.

# RGB-T Pairs Environment

Dataset Plat. @1HzA RGB | THR | Sync | Reg. pqc—nmod Aerial  U-Drive  U-Park
MSZ [1] \ 16215 S S v X X X X v X
ViVID++ [12] H/V 14824 M M v X Xxb X X v X
STheReO [14] A 8393 S Se X X X X X v X
CART [2] H/D 9678 M M v v X v v X X
Boson-Nighttime [3] D 52590/N4 M M X v X X v X X
OdomBeyondVision [13] D/G/H 7129 S M X X v X X X X
M2P2 [17] G 34362 S M v v X v X X v
Ours (TartanRGBT) H 16943 S S v v v v X v v

4 Number of frames is considered at 1Hz to ensure non-redundancy of data in knowledge-distillation.
Y While VIVID++ contains some indoor sequences, all of them are in a VICON cage and hence not diverse even for an indoor dataset

¢ The stereo thermal pair is not timesynced

4 The frequency of thermal capture is not specified. So the N is unknown

Platform abbreviations: V = Vehicle, H = Handheld, D = Drone/UAV, G = UGV. Combinations (e.g., H/V, U/G/H) indicate multiple platforms. Reg. =
registered (aligned) RGB-T pairs; Sync = hardware synchronization. U-Drive and U-Park denote urban driving (campus, road, residential areas) and park
environments, respectively. As shown, our dataset is the most diverse while also providing synced and registered RGB—thermal pairs.

Fig. 5.
blended overlays for indoor, off-road, and urban domains with blending
factors o € {0.00, 0.50, 1.00}. Due to sensor geometry (thermal mounted
below RGB), the thermal view includes more of the lower scene, resulting
in additional pixels at the bottom of the thermal images that are not present
in the RGB images, producing black regions where RGB pixels are absent.

RGB-Thermal Registration in the TartanRGBT dataset: alpha-

to back-project pixels into 3D; (2) transform 3D points into
the thermal frame with pre-calibrated extrinsics; (3) project
with thermal intrinsics to yield aligned RGB—thermal pairs
(Fig. ).

Similar to [23], which employed the state-of-the-art stereo
model of its time for dense depth estimation, we adopt Foun-
dationStereo to obtain dense pixel-level alignment. Although
the estimated depth is not perfect and errors in prediction
directly affect the aligned outputs, it offers a practical alterna-
tive to accurate but sparse LiDAR, as knowledge distillation
requires dense supervision. Furthermore, continued advances
in depth estimation models are expected to further improve
alignment quality.

FoundationStereo produces a dense depth map, but during

RGB-thermal alignment black pixels arise from occlusions
between the two views and from rasterizing 3D points onto
discrete thermal pixels, leaving some locations unfilled. We
address this with two steps. First, a z-buffer enforces visi-
bility by retaining only the nearest depth per thermal pixel.
Second, after projection to 2D, bilinear splatting improves
coverage by distributing each projected sample across its four
neighboring pixels with interpolation weights. As shown in
Fig. 5] splatting is not applied in the lower regions of the
thermal images where no RGB depth is available, as this
would otherwise hallucinate content without valid 3D data.

E. Limitations

We will release dense depth and odometry to support
RGB-thermal alignment and VPR training. As they are
obtained from stereo-RGB algorithms, their accuracy is in-
sufficient for benchmarking tasks such as odometry or depth
estimation. Thus, we also do not evaluate downstream tasks
like cross-modal place recognition or depth estimation on
TartanRGBT. Since VPR training does not require precise
odometry, the current estimates suffice. Future work will
include GPS and LiDAR for accurate odometry and depth.

VI. RESULTS

We demonstrate the effectiveness of AnyThermal on three
tasks: cross-modal place recognition, thermal segmentation,
and monocular thermal depth estimation.

A. Cross-Modal Place Recognition

1) Formulation: Our cross-modal place recognition task,
as described in Section [[II-D] is defined as: given a ther-
mal query image, retrieve a matching RGB image from
a database. To ensure proper evaluation, the paired RGB
image of a query is excluded from its positive set. We report
Recall@] (R@1) in Table [, where R@]1 is the probability
that the top retrieved match is positive for a query.



2) Evaluation Datasets: We evaluate AnyThermal and
baselines on three diverse zero-shot datasets: CART [2]
(aerial), MS2 [1] (urban), and OdomBeyondVision [13] (in-
door). CART and MS2 provide GPS, enabling all sequences
to form a shared database, while OdomBeyondVision relies
on intra-sequence odometry and is evaluated per sequence.
For OdomBeyondVision, a weighted mean recall is reported
across sequences, weighted by the number of queries in each.

3) Baselines: We compare against two categories:

e RGB Methods: R2former [33], NetVLAD [26],
MixVPR [34], and SALAD [24]. Since SALAD con-
sistently outperforms the others, we report it as the
representative RGB baseline. We also include frozen
RGB-DINOV2 (teacher) without a VPR head.

e RGB-Thermal Methods: ImageBind [10] and SGM [3].
Although ImageBind is not trained for VPR, we include
it since it is the only other method to perform knowledge
distillation between RGB and thermal. SGM is trained
for cross-modal place recognition, but only on Boson
Nightime [3], which is an aerial-only dataset.

TABLE I
CROSS-MODAL PLACE RECOGNITION ACROSS DIVERSE
ENVIRONMENTS.

Model Name Backbone Head? | MS? CART | OBV’

r: 15 r: 15 r:3
*DINOV2 [5] DINOv2 X 2721 | 2598 | 29.49
*SALAD [24] DINOv2 S 76.97 | 49.38 | 38.94
*ImageBind [10] ViT-Huge X 0.79 1.13 10.25
*SGM [3] ResNet-18 N 20.02 | 4559 | 21.05
AnyThermal AnyThermal X 75.39 | 4545 | 45.40
AnyThermal-VPR  AnyThermal S 81.11 | 56.00 | 53.17

2 VPR Heads: N: NetVLAD, S: SALAD, X: No head has been used, and
instead the CLS token is used as the feature vector for the images
Y OBV: OdomBeyondVision [13]

The positive radius (7, in meters) used for determining positive matches,
is chosen per environment (MS2: Urban, CART: Aerial, OBV: Indoor). *
denotes frozen models (backbone + head from original papers). Red
indicates RGB-only training, while blue indicates RGB—thermal training.
AnyThermal belongs to the blue category, as it is initialized with
RGB-pretrained weights and distilled on thermal images. The upper
section lists RGB-only methods, and the lower section lists RGB—thermal
methods. AnyThermal, especially with a VPR head, outperforms
baselines; The gap between *DINOv2 and AnyThermal shows the benefit
of distilling RGB-pretrained backbones on thermal data.

As shown in Table [l AnyThermal-VPR outperforms all
baselines across environments. Moreover, the gap between
DINOv2-X and AnyThermal-X underscores the need for
knowledge distillation in thermal images and confirms that
frozen RGB extractors are suboptimal. This is further evi-
denced by AnyThermal matching SGM’s aerial performance
without a VPR head, despite both being trained solely on
the Boson Nighttime dataset for aerial data. Fig. [0 further
illustrates that AnyThermal-VPR aligns RGB and thermal
representations more effectively than the strongest baseline.

B. Thermal Segmentation

We evaluated the use of AnyThermal for thermal segmen-
tation (Fig. |Z|) on the MF-Net [15] dataset using its standard

2D PaCMAP Representation : RGB - Thermal
SALAD AnyThermal-VPR

Dist 17.03 Dist 0.38

Dist 18.61 Dist 0.95

Query SALAD

AnyThermal-VPR

Fig. 6. Cross-Modal VPR on OdomBeyondVision: Top: PACMAP [35]
representations show SALAD poorly(far) aligns RGB-Thermal embeddings,
while AnyThermal-VPR aligns them well in a shared representation space.
Bottom: Example queries where SALAD fails to retrieve the correct RGB
match, but AnyThermal-VPR succeeds, with key clues circled.

TABLE III
THERMAL SEGMENTATION ON MF-NET DATASET:

Model # parameters(M) | mloU (%) | FPS
RTFENET-152 [36] 196.37 47.00% 8.37
MCNET [9] 54.65 51.95 1.88
RGB_DINO-SEG 87.02 45.46% 6.79
AnyThermal-SEG 87.02 53.47 % 6.79

The number of parameters is reported in Millions (M). The FPS is
reported on ORIN AGX 64GB. We can see, AnyThermal with a 2-layer
MLP head (SEG) achieves state-of-the-art performance while being 3.6x

faster than the closest performing baseline

train/val/test splits and all 9 classes (including background)
for mloU. Table [I1]| also reports FPS on an NVIDIA ORIN
AGX 64GB. AnyThermal achieves state-of-the-art mloU
while delivering a 3.6x FPS boost over the closest baseline.

C. Mono-Thermal Depth Estimation

Following [8], we evaluate on the MS? dataset using sparse
LiDAR ground truth and report multiple metrics (Table [[V]).
We use the MIDAS [29] architecture, where we ablate the
effect of replacing the EfficientLite3 backbone used in [8]
with frozen DINOv2, and further with AnyThermal. The
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Fig. 7. Thermal Segmentation on MF-Net [15]: The frozen DINOv2 baseline misses objects (e.g., the car on the right) and misclassifies the background,

while our AnyThermal backbone segments accurately.

TABLE IV
MONOCULAR DEPTH ESTIMATION ON THE MS? DATASET

Backbone \ AbsRell SqRell RMSE| RMSElog|
efficientnet lite3 0.1015 0.3955 2.9587 0.1417
dinov2_vitb14 0.0905 0.3177 2.7493 0.1208
AnyThermal 0.0883 0.3142 2.7432 0.1182

We evaluate our proposed method with a representative MDE network
(MiDaS [29]). All results are averaged over all day, night, and rainy
evaluation sets of MS2. The best performance is highlighted in bold.

gain from EfficientLite3 to DINOv2 reflects network depth,
while the additional improvement with AnyThermal proves
its benefits over frozen-RGB pretrained backbones.

D. Scaling Data in AnyThermal training

It is crucial to understand how multi-domain datasets
in knowledge distillation affect downstream performance.
Specifically, we ask whether simply adding more data im-
proves efficacy, or if dataset diversity is essential for building
robust feature extraction backbones.

We study the effect of data scaling during pre-training
by distilling knowledge into the AnyThermal backbone
and training the VPR head. Among task-specific heads,
only VPR is included in pre-training, since it can leverage
GPS/odometry or temporal cues and be evaluated zero-shot.
In contrast, segmentation and depth require labeled data, so
these tasks are trained and evaluated on the respective splits
of their evaluation datasets. This setup ensures fairness: VPR
baselines are evaluated zero-shot, while segmentation and
depth baselines are trained on the evaluation datasets.

As shown in Fig. [§] adding more datasets generally
improves performance but not always:

« Domain Gap in Single-Dataset Distillation: In Fig.
(middle, bottom), a AnyThermal variant distilled only
on Boson Nighttime (aerial) underperforms in urban
domains (red), compared to the frozen RGB-DINOv2
(No distillation). This gap arises from its aerial-only
training. Conversely, performance improves on CART
(middle, yellow), as it is also aerial.

o Performance Saturation: In Fig. [§| adding more ur-
ban data (B+V — B+V+F — B+V+F+S) yields only
marginal gains, with some aerial evaluations showing
drops (e.g., thermal segmentation dip between B+ V +
Fad B+V+F+585).
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Fig. 8.  Effect of scaling data in pretraining - knowledge distillation

+ VPR training(for top plot only)- on downstream performance. X-axis
shows pretraining datasets (B: Boson Nightime, V: ViVID++, F: Freiburg, S:
STheReO, T: TartanRGBT). [Top]: Recall for cross-modal place recognition
(higher is better). [Middle]: mIoU for thermal segmentation on MF-Net and
CART (higher is better). [Bottom]: Absolute relative (Abs_Rel) error for
monocular thermal depth estimation (lower is better). Adding TartanRGBT
consistently improves performance across environments and tasks, unlike
Freiburg and STheReO, which add little diversity and lead to saturation.



In contrast, adding our TartanRGBT consistently improves
performance across tasks and domains, with notable gains in
indoor VPR recall (from rich indoor sequences), improved
segmentation on CART (from off-road coverage since CART
segmentation includes off-road data), and even boosts in
urban domains despite existing urban datasets.

These results show that while scaling data helps up to a
point, data diversity is more critical than scale for building
robust, generalizable feature extractors.

VII. CONCLUSION AND FUTURE WORK

We present AnyThermal, a task-agnostic thermal feature
extraction backbone distilled from pre-trained RGB back-
bones. To further advance thermal research, we introduced
the TartanRGBT Platform—the first open-source RGB-T
collection framework—and curated a diverse TartanRGBT
dataset. Together, AnyThermal and TartanRGBT deliver up
to 36% improvement across environments (urban, indoor,
aerial, off-road) and tasks (cross-modal place recognition,
thermal segmentation, depth estimation).

Future directions can include A) applying AnyThermal to
more diverse tasks such as object detection and cross-modal
matching, and B) distilling stronger backbones leveraging
newer visual foundation models [6]. As shown in Fig.
AnyThermal’s performance has not yet plateaued, suggesting
further gains through scaling diverse RGB-T data. Future
efforts will focus on (i) expanding TartanRGBT with addi-
tional sensors and environments (e.g., GPS, aerial); and (ii)
community-driven data collection with our platform to ad-
vance generalization of thermal and cross-modal algorithms.
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